Size-Dependent Melting Behavior of Colloidal In, Sn, and Bi Nanocrystals

نویسندگان

  • Minglu Liu
  • Robert Y. Wang
چکیده

Colloidal nanocrystals are a technologically important class of nanostructures whose phase change properties have been largely unexplored. Here we report on the melting behavior of In, Sn, and Bi nanocrystals dispersed in a polymer matrix. This polymer matrix prevents the nanocrystals from coalescing with one another and enables previously unaccessed observations on the melting behavior of colloidal nanocrystals. We measure the melting temperature, melting enthalpy, and melting entropy of colloidal nanocrystals with diameters of approximately 10 to 20 nm. All of these properties decrease as nanocrystal size decreases, although the depression rate for melting temperature is comparatively slower than that of melting enthalpy and melting entropy. We also observe an elevated melting temperature during the initial melt-freeze cycle that we attribute to surface stabilization from the organic ligands on the nanocrystal surface. Broad endothermic melting valleys and very large supercoolings in our calorimetry data suggest that colloidal nanocrystals exhibit a significant amount of surface pre-melting and low heterogeneous nucleation probabilities during freezing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of quantum size effects and optical characteristics in colloidal Cd1-xSnxTe quantum dotes

In this work, we report, optical properties of Cd1-xSnxTe quantum dots (x= 0.05, 0.10 and 0.15) synthesized in water using thioglycolic acid (TGA) as a modifier agent. The optical characterization of the samples was performed through absorption (UV) and photoluminescence spectra (PL). A red shift absorption and fluorescent emission peaks was observed which can be related t...

متن کامل

Study of quantum size effects and optical characteristics in colloidal Cd1-xSnxTe quantum dotes

In this work, we report, optical properties of Cd1-xSnxTe quantum dots (x= 0.05, 0.10 and 0.15) synthesized in water using thioglycolic acid (TGA) as a modifier agent. The optical characterization of the samples was performed through absorption (UV) and photoluminescence spectra (PL). A red shift absorption and fluorescent emission peaks was observed which can be related t...

متن کامل

Colloidal synthesis of germanium nanocrystals

In this study, colloidal germanium nanocrystals were synthesized by a simple and novel method, and their optical properties were also studied. Polyvinyl alcohol (PVA) as a surface modifier was used to control the optical properties of colloidal Ge nanocrystals. Fourier transform infrared spectroscopy (FTIR) analysis was performed to identify the various functional groups present in the sample. ...

متن کامل

Bi-functional NaLuF4:Gd3+/Yb3+/Er3+ nanocrystals: hydrothermal synthesis, optical and magnetic properties

Magnetic-fluorescent lanthanide doped sodium lutetium fluoride (NaLuF4:Yb3+/Er3+/Gd3+) nanocrystals were synthesized via facile hydrothermal method by varying concentration of Gd3+. Powder X-ray powder diffraction (PXRD), scanning electron microscopy (SEM),transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), p...

متن کامل

Shape Control of Colloidal Cu2–xS Polyhedral Nanocrystals by Tuning the Nucleation Rates

Synthesis protocols for colloidal nanocrystals (NCs) with narrow size and shape distributions are of particular interest for the successful implementation of these nanocrystals into devices. Moreover, the preparation of NCs with well-defined crystal phases is of key importance. In this work, we show that Sn(IV)-thiolate complexes formed in situ strongly influence the nucleation and growth rates...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015